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Proof of Proposition 5
As with the proof of Proposition 4, we condition on z = z. Setting § = x — % and setting §,(C) =
X (C)|z=2 — X, we can rewrite the estimation problem [2] from the main paper as follows:
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Letting R; and R, denote orthogonal subspaces that contain @7 and @3, i.e., @1 C R; and Q2 C Rs, and

letting 61 = Pg, (8),82 = Pg,(8), SS)(C) = Pr, (6,(C)), SS)(C) = Pg,(8,,(C)) denote the projections of

5,6, (C) onto Ry, Ra, we can rewrite the above reformulated optimization problem as:
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As the sets @1, @2 live in orthogonal subspaces, the two variables & (1), 5 in this problem can be optimized
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separately. Consequently, we have that ||5£1 )(C)|| ¢, < a and that
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This bound can be established following the same sequence of steps as in the proof of Proposition 4. Com-
bining the two bounds on 3511)((3) and 3;2) (C), one can then check that
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To obtain a bound on [|X,,(C)|,=z — x*||7, we note that
%0 (C)la=z = x"[I7, < 2[I%n(C)la=z — XIIZ, + Ix" — XII7,]
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Taking expectations concludes the proof. [J

Proof of Proposition 9

The main steps of this proof follow the steps of a similar result in [1], with the principal difference being
that we wish to bound Gaussian squared-complexity rather than Gaussian complexity. A central theme in
this proof is the appeal to Gaussian isoperimetry. Let SP~! denote the sphere in p dimensions. Then in
bounding the expected squared-distance to the dual cone C* with K* N'SP~! having a volume of y, we need
only consider the extremal case of a spherical cap in SP~! having a volume of x. The manner in which this
is made precise will become clear in the proof. Before proceeding with the main proof, we state and derive
a result on the solid angle subtended by a spherical cap in SP~! to which we will need to appeal repeatedly:



Lemma 2 Let1)(u) denote the solid angle subtended by a spherical cap in SP~1 with volume u € ( exp{—a5},
L ) Then
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Proof of Lemma 2: Consider the following definition of a spherical cap, parametrized by height h:
J={aecSP ! |a >h}

Here a; denotes the first coordinate of a € RP. Given a spherical cap of height h € [0, 1], the solid angle
is given by:

= g —sin~1(h). (10)

We can thus obtain bounds on the solid angle of a spherical cap via bounds on its height. The following
result from [2] relates the volume of a spherical cap to its height:

Lemma 3 [2] For % < h <1 the volume [i(p,h) of a spherical cap of height h in SP~! is bounded as
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Continuing with the proof of Lemma 2, note that for 2= < h < 1
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Choosing h = # we have 7 < h < 1 based on the assumption u € ( exp{—p/20}, = I ) Conse-

quently, we can apply Lemma 3 with this value of h combined with (10) to conclude that
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Hence the solid angle 1 <ﬂ (p, % is less than the solid angle 1(u). Consequently, we use (10)
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to conclude that

Using the bound sin™' (k) < Zh, we obtain the desired bound. O

Proof of Proposition 9: We bound the Gaussian squared-complexity of K by bounding the expected
squared-distance to the polar cone K*. Let ji(U;t) for U € SP~! and ¢ > 0 denote the volume of the set of
points in SP~! that are within a Euclidean distance of at most ¢ from U (recall that the volume of this set
is equivalent to the measure of the set with respect to the normalized Haar measure on SP~1). We have the



following sequence of relations by appealing to the independence of the direction g/||g|¢, and of the length
llg|le, of a standard normal vector g:
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Here the third equality follows based on the integral version of the expected value. Let V C SP~! denote a
spherical cap with the same volume y as K* N'SP~!. Then we have by spherical isoperimetry that ji(V;s) >
a(K* NsP=L:s) for all s > 0 [3]. Thus

E[dist(g, K£*)?] < 2p/0OO s[1 — (Vs s)|ds. (11)

From here onward, we focus exclusively on bounding the integral.

Let 7(¢) denote the volume of a spherical cap subtending a solid angle of ¢ radians. Recall that 1 is a
quantity between 0 and 7. As in Lemma 2 let 1)(u) denote the solid angle of a spherical cone subtending a
solid angle of u. Since the Euclidean distance between points on a sphere is always smaller than the geodesic
distance, we have that G(V;s) > 7(¢(u) 4+ s). Further, we have the following explicit formula for 7(v) [4]:
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T(Y) = w;l/o sin? ! (v)dv,

where w, = foﬂ sin”~*(v)dv is the normalization constant. Combining these latter two observations, we can
bound the integral in (11) as:
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Next we change the order of integration to obtain:
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We now appeal to the inequalities w, ' < /p —1/2 and sin(x) < exp(—(z — §)?/2) for z € [0, 7] to obtain
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Performing a change of variables with a = \/p — 1(v — %), we have
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Here the inequality was obtained by suitably changing the limits of integration. We now employ Lemma 2
to obtain the final bound:
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Here the final bound holds because p < 1/4e2 and p > 12. O
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